Fuzzy Predicting Models in “Structure – Property” Problem
نویسندگان
چکیده
A new approach for analyzing the moleculedescriptor matrix for the QSAR problem (Quantitative StructureActivity Relationship) based on a fuzzy cluster structure of the learning sample is presented. The ways for generating fast rules for refusing prediction and searching the spikes in the learning sample are described. For this purpose, a special space of descriptors, simple for calculation, is introduced. The ways for optimizing the discriminant function according to fuzzy clustering parameters are examined. Highly predictive models based on the presented approach have been generated. The models are compared, and the efficiency of the described methods is revealed.
منابع مشابه
A committee machine approach for predicting permeability from well log data: a case study from a heterogeneous carbonate reservoir, Balal oil Field, Persian Gulf
Permeability prediction problem has been examined using several methods such as empirical formulas, regression analysis and intelligent systems especially neural networks and fuzzy logic. This study proposes an improved and novel model for predicting permeability from conventional well log data. The methodology is integration of empirical formulas, multiple regression and neuro-fuzzy in a commi...
متن کاملInvestigation of Evolving Fuzzy Systems Methods FLEXFIS and eTS on Predicting Residential Prices
In this paper, we investigate on-line fuzzy modeling for predicting the prices of residential premises using the concept of evolving fuzzy models. These combine the aspects of incrementally updating the parameters and expanding the inner structure on demand with the concepts of uncertainty modeling in a possibilistic and linguistic manner (via fuzzy sets and fuzzy rule bases). The FLEXFIS and e...
متن کاملTwo Robust Fuzzy Regression Models and Their Applications in Predicting Imperfections of Cotton Yarn
متن کامل
QSPR models to predict thermodynamic properties of some mono and polycyclic aromatic hydrocarbons (PAHs) using GA-MLR
Quantitative Structure-Property Relationship (QSPR) models for modeling and predicting thermodynamic properties such as the enthalpy of vaporization at standard condition (ΔH˚vap kJ mol-1) and normal temperature of boiling points (T˚bp K) of 57 mono and Polycyclic Aromatic Hydrocarbons (PAHs) have been investigated. The PAHs were randomly separated into 2 groups: training and test sets. A set o...
متن کاملA Neuro-Fuzzy Framework for Predicting Ash Properties in Combustion Processes
This paper describes a neuro-fuzzy modeling framework for predicting the properties of ashes originated from combustion processes for electric generation. The prediction problem is tackled by means of a neuro-fuzzy system in which a neural network and a fuzzy system are combined in a fused architecture, so that the structure and the parameters of the fuzzy rule base are determined via a two-pha...
متن کامل